Séminaire de Systèmes dynamiques, Analyse et Géométrie

Un séminaire centré autour des Systèmes dynamiques, de la géométrie et de l’analyse sur les variétés riemanniennes a lieu régulièrement au sein de notre laboratoire.

L’organisateur actuel est Andrea Venturelli.

Les exposés se déroulent sur le campus Agroparc, au CERI (centre d’enseignement et de recherche en informatique), le mardi à 14h30.

Les membres du laboratoire de mathématiques ont leur bureau dans le bâtiment « LMA » situé à côté du CERI sur la zone Agroparc.

Pour venir au campus Agroparc depuis la Gare TGV, il y a deux possibilités.

La première possibilité est de prendre un train TER « virgule » qui joint la gare TGV à la gare centre ville en 5 mn (train toutes les 15-30 min). Depuis la Gare centre, il faut marcher environ 15 min (trajet)   pour prendre le bus ligne 4 ou ligne 3 (arrêt Limbert), direction Agroparc, et descendre au terminus « Agroparc » avec la ligne 4 ou « CROUS » avec la ligne 3 (en raison des travaux du tram et des modifications régulières, veuillez consulter le site de la tcra). Il y a un bus toutes les 15 mn et le trajet en bus dure environ 25 min.

L’autre possibilité est de prendre le bus ligne 14 depuis la gare TGV, puis de descendre à l’arrêt Parc des Sports pour prendre le bus ligne 3 jusqu’à l’arrêt « CROUS ». Le trajet prendra environ 1h.

Pour se rendre au LMA depuis l’arrêt de bus « agroparc » voir ici , et depuis l’arrêt de bus « crous » voir ici.

 

Programme 2018-2019, le mardi à 14h30.

Le mardi 11 juin : Julie Deserti (Université Paris Diderot). 

Le mardi 26 février : Jasmin Raissy (Université Toulouse III – Paul Sabatier).

Le mardi 12 février : Maÿlis Limouzineau (Université de Cologne).

Le mardi 5 février : Julien Korinman (Universidade Federal de São Carlos, Brésil).

Le mardi 29 janvier : Pascal Hubert (Aix-Marseille Université). 

Titre : billard dans les pavages.

Résumé : je vous parlerai de « tiling billiards », système dynamique qui a une origine physique : une particule se déplace dans un pavage en faisant des réflexions sur les côtés un peu analogues au billard. Ce sujet m’a surtout attiré car, après une traduction du problème due à Diana Davis et ses étudiants, on peut se ramener à étudier des familles d’échanges d’intervalles avec flips, sujet abordé par Danthony et Nogueira à la fin des années 80 puis un peu oublié. Ce que je vous raconterai est un travail en commun avec Olga Romaskevich.

Le mardi 15 janvier : Alain Albouy (Institut de Mécanique Céleste, Paris).

Le mardi 8 janvier : Vincent Colin (Université de Nantes). 

Le mardi 4 décembre (salle de convivialité): Frédéric Le Roux (Sorbonne Université).

Titre : Entropie polynomiale et homéomorphismes de Brouwer .

Travail en commun avec Louis Hauseux.

Résumé : L’entropie polynomiale topologique a été récemment utilisée par Jean-Pierre Marco, dans le contexte des systèmes hamiltoniens intégrables, pour quantifier la croissance du nombre d’orbites de longueur n, pour des systèmes d’entropie nulle. D’une part, nous montrons que cet invariant est particulièrement adapté à l’étude de la partie errante d’un système dynamique quelconque. D’autre part, nous construisons des exemples d’homéomorphismes du plan sans point fixe, pour lesquels l’entropie polynomiale prend toutes les valeurs ≥ 2, la valeur 1 étant réservée aux conjugués à la translation.

Le mardi 27 novembre (salle de convivialité),  Colloquium du LMA : Céline Lacaux (Avignon Université).

Titre : Équations différentielles stochastiques

Résumé :  Je présenterai les bases du calcul stochastique pour le mouvement brownien et des liens entre EDP et EDS. Si le temps me le permet, j’évoquerai succinctement la théorie des « trajectoires rugueuses » : cette théorie permet notamment de définir des intégrales stochastiques dans un cadre de processus très irréguliers (e.g. brownien fractionnaire).

 

Le mardi 20 novembre (salle de convivialité) :Anne Pichon (Aix-Marseille Université).                            

Titre : Sur la géométrie Lipschitz locale des espaces singuliers.

Résumé : l’expression « géométrie Lipschitz  fait référence à la catégorie des espaces métriques dont les morphismes sont les applications  Lipschitz. Les isomorphismes dans cette catégorie sont les homéomorphismes bi-lipschitz. Un germe despace analytique réel (V,0) a deux géométries Lipschitz  naturelles induites par le choix d’un plongement de V dans un R^n : la métrique “externe » est définie par la restriction de la distance euclidienne, tandis que la métrique “interne” est définie par l’infimum des longueurs des chemins sur V.   L’étude des géométries Lipschitz associées à ces deux métriques est un domaine en plein développement.  Je vais expliquer pourquoi, énoncer quelques résultats récents et  et donner des questions ouvertes. 

Le mardi 13 novembre (salle de convivialité) : Sophie Grivaux (Université de Lille).

Titre : Coefficients de Fourier de mesures continues sur la suite de Furstenberg

Résumé : J’expliquerai comment construire des mesures de probabilité continues sur le cercle unité dont la suite des coefficients de Fourier est minorée en module sur l’ensemble $\{2^k3^l\;;\;k,l\ge 1\}$. Ce résultat infirme une conjecture de R. Lyons, motivée par la Conjecture de Furstenberg concernant les mesures $\times 2$ et $\times 3$ invariantes sur le cercle.
Il s’agit d’un travail en collaboration avec Catalin Badea (Lille).

Le mardi 6 novembre (salle de convivialité)  : Maxime Wolff (Sorbonne Université).

Titre : Actions de groupes de surfaces sur le cercle : rigidité et géométricité.

Résumé :  Je parlerai de quelques résultats récents obtenus dans une collaboration avec Kathryn Mann, dans laquelle on s’intéresse aux représentations de groupes fondamentaux de surfaces de genre au moins deux, dans le groupe des homéomorphismes directs du cercle.

Le mardi 23 octobre (salle de convivialité) : Simon Allais (Ecole Normale Supérieure de Lyon).

Titre : Fonctions génératrices et phénomènes de rigidité symplectique et de contact

Résumé : En 1992, Viterbo proposa de nouveaux moyens d’étudier la dynamique hamiltonienne de $\mathbb{R}^{2n}$ en appliquant la théorie de Morse à l’étude des fonctions génératrices. Parmi ces résultats figurent une nouvelle preuve du théorème de non-tassement de Gromov (1985) ainsi que l’esquisse d’une preuve du théorème du chameau symplectique. Une partie importante de ce travail fut étendue à l’étude de la géométrie de contact de $\mathbb{R}^{2n}\times S^1$ par Sandon en 2011. Ceci permit à Sandon de retrouver le théorème de non-tassement de Eliashberg, Kim et Polterovich (2006).
Dans cet exposé, je rappellerai les points essentiels de ces théories et donnerai une idée de la façon dont l’idée de Viterbo permet d’obtenir une preuve du théorème du chameau symplectique s’étendant facilement au cas de la géométrie de contact.

Le mardi 16 octobre (salle de convivialité) : Alexej Glutsyuk (Ecole Normale Supérieure de Lyon).

Titre : Sur les billards polynomialement intégrables dans les surfaces à courbure constante.

Résumé : La célèbre Conjecture de Birkhoff concerne un billard convexe planaire à frontière lisse. Rappellons, qu’une caustique d’un billard est une courbe C dont toute droite tangente se reflète de la frontière du billard en une droite aussi tangente à C. Un billard s’appelle intégrable au sense de Birkhoff, si un voisinage intérieur de sa frontière est feuilleté par des caustiques fermées. La Conjecture de Birkhoff affirme, que tout billard planaire intégrable au sense de Birkhoff est une ellipse. Récemment Vadim Kaloshin et Alfonso Sorrentino en ont démontré la version locale: toute déformation intégrable d’une ellipse est une ellipse. L’intégrabilité d’un billard au sense de Birkhoff est équivalente à l’intégrabilité au sense de Liouville du flot de billard: l’existence d’une intégrale première indépendante avec l’intégrale triviale, le module de la vitesse (au voisinage du fibré tangent unitaire de la frontière). La version algébrique de la Conjecture de Birkhoff, qui a été d’abord étudiée par Sergei Bolotin, concerne les billards polynomialement intégrables, dont le flot admet une intégrale première polynomiale en la vitesse qui est non constant le long de l’hypersurface de niveau unitaire du module de la vitesse.

Dans cet exposé nous présenterons un survol court de la Conjecture de Birkhoff et la solution complète de sa version algébrique. Nous démontrons, que tout billard planaire polynomialement intégrable à frontière C2 lisse connexe non linéaire est une ellipse. Nous classifions les billards polynomialement intégrables à frontière lisse par morceaux sur toute surface à courbure constante: plan, sphère, le plan hyperbolique. Ce sont résultats en commun avec Misha Bialy et Andrey Mironov.

Le mardi 9 octobre (CERI, salle S2) : François Maucourant (Université de Rennes 1).

Titre : Ergodicité de certains système dynamiques fibrés en tores, et rotations asynchrones.

Résumé : Soit f une fonction de [0,1] à valeurs dans le cercle (ou un tore), à la laquelle on pense comme une famille mesurable de rotations d’angles f(x), que l’on itère toutes n fois. On expliquera à quelle condition sur f on peut s’attendre à ce que le graphe de n*f « remplisse » uniformément le cylindre, et en quoi ce phénomène apparaît naturellement sur des fibré en tore au dessus de systèmes homogènes tels que SL(2,R)/SL(2,Z).

Le mardi 2 octobre (CERI, salle S8) : Elise Goujard (Université de Bordeaux).

Titre : Billards, surfaces plates et leurs espaces de modules.

Résumé : La dynamique dans les billards polygonaux est intimement reliée à la  géométrie et la dynamique sur les espaces de modules de surfaces  plates. En particulier le calcul des volumes de ces espaces de modules  permet d’obtenir des informations quantitatives sur la dynamique des  billards. Je présenterai un travail en collaboration avec V.  Delecroix, A. Zorich et P. Zorich sur les volumes des espaces de  modules de surfaces plates « génériques », et leur lien avec certains  nombres d’intersection sur l’espace de modules de courbes. En  particulier on verra comment le calcul de ces volumes est parallèle au  calcul des géodésiques fermées sur les surfaces hyperboliques.

Le mardi 25 septembre (CERI, salle S8) : Nicolas Vichery (Université Claude Bernard, Lyon).

Titre : Analyse non-lisse et théorie des faisceaux.

Résumé : Nous donnerons une définition du sous-gradient homologique d’une fonction à valeur réelle que nous comparerons à d’autres sous-gradients. Nous rappelerons ses principales propriétés et son intérêt pour les équations d’Hamilton-Jacobi ainsi que pour la géométrie symplectique.

Enfin, nous étudierons le cas particulier des différences de fonctions convexes. Ce travail est une application de l’analyse microlocale des faisceaux introduite par Kashiwara et Schapira. On parlera en particulier de transformée de Legendre « toujours involutive » et de « différence » de Minkowski sur les convexes.

 

Programme 2017-2018, le mardi à 14h30.

Le mardi 5 juin (CERI, salle S2) : Ludovic Marquis (Université de Rennes).

Titre : Groupes quasi-Fuchsiens Lorentziens qui ne sont pas des réseaux.

Résumé : Construire des sous-groupes discrets d’un groupe de Lie G avec des propriétés prescrites à l’avance sera l’objet de cet exposé. On  s’intéressera aux cas où G est le groupe des isométries de l’espace hyperbolique de dimension d ou le groupe des isométries de l’espace Anti de Sitter  de dimension d+1, ce dernier est l’analogue Lorentzien de l’espace hyperbolique.

Un groupe (hyperbolique)-quasi-Fuchsien est un sous-groupe convexe-cocompact d’isométries de l’espace hyperbolique réel de dimension d+1 dont l’ensemble limite est une sphère de dimension d-1. Les groupes quasi-Fuchsiens Lorentziens sont définis de façon analogue mais dans le groupe des isométries de l’espace Anti de Sitter de dimension d+1. Plus précisément, ce sont les sous-groupes convexe-cocompacts de l’espace Anti de Sitter de dimension d+1 dont l’ensemble limite est une sphère acausal de dimension d-1.

J’expliquerai la construction classique de tels groupes, puis comment construire de tels groupes en petite dimension qui ne sont pas des réseaux d’un groupe de Lie semi-simple. Ceci est un travail en commun avec Gye-Seon Lee (Heidelberg).

Le jeudi  3 mai (CERI, salle S2): Sergio Fenley (Florida State University).

Titre: Partially hyperbolic diffeomorphisms in dimension 3.

Résumé: These diffeomorphisms exhibit weaker forms of hyperbolicity and are extremely common. Such a diffeomorphism f has stable, unstable and center bundles invariant under df. This is a very intense area of research currently. Some of the people involved are Wilkinson, Burns, Rodrigues-Hertz, Rodrigues-Hertz, Ures, Potrie, Barthelme, Frankel and the speaker. We review basic examples, conjectures. We also talk about dynamical coherence – this means that there are two dimensional f-invariant foliations which are tangent to the center stable and center unstable bundles. Unlike the strictly hyperbolic case, (no center direction), there are non integrable examples. We will also talk about some recent counterexamples of a main conjecture.

Le Mardi 17 avril (CERI, salle S6) : Andrea Seppi (University of Luxembourg).

Titre : Plongements isométriques du plan hyperbolique dans l’espace de Minkowski.

Résumé : L’espace de Minkowski est l’analogue lorentzien de l’espace euclidien. Il est bien connu qu’il existe un plongement isométrique du plan hyperbolique dans l’espace de Minkowski de dimension 2+1, qui est l’analogue du plongement isométrique de la sphère dans l’espace euclidien. Contrairement au cas euclidien, ce plongement isométrique n’est pas unique à isométries globales près. Je présenterai des résultats, obtenus conjointement avec Francesco Bonsante et Peter Smillie, sur le problème de la classification de tels plongements isométriques, qui est fortement relié aux équations de Monge-Ampère, aux applications harmoniques entre surfaces riemanniennes et à la théorie de l’espace de Teichmüller universel.

Le Mardi 3 avril (CERI, salle S3) : Pierre Will (Université Grenoble-Alpes). 

Titre : Groupes discrets en géométrie hyperbolique complexe.

Résumé : Dans cet exposé, je vais tout d’abord présenter l’espace hyperbolique complexe et ses principales propriétés. En un mot, il s’agit de l’espace symétrique du groupe de Lie PU(n,1). J’insisterai en particulier sur ce qui le différencie de l’espace hyperbolique réel, souvent plus familier. Dans une seconde partie, je présenterai des exemples construits récemment de sous-groupes discrets de PU(2,1), dont certains construits en collaboration avec John Parker, qui donnent des quotients intéressants de la boule unité de C^2 : des variétés hyperboliques complexes dont le bord est une variété hyperbolique réelle. Si le temps le permet, j’expliquerai comment interpréter ce résultat dans les SL(3,C)-variétés de caractères de certains groupes.

Le Mardi 27 mars (CERI, salle S3) : Valentin Seigneur (ENS de Lyon).

Titre : Extension de fonctions de Morse de la sphère à la boule.

Résumé : Donnée une fonction de Morse définie sur un voisinage de la sphère standard dans la boule, à quelle condition peut-on l’étendre à une fonction sur la boule toute entière qui n’a pas de point critique ?

Dans cet exposé, nous donnerons une condition nécessaire pour avoir une telle extension qui utilise les complexes dits de Morse de notre fonction.

Le Jeudi 22 mars (CERI, salle S3) : Charles Francès (Université de Strasbourg).

Titre: Sur la topologie du groupe des automorphismes des structures géométriques rigides.

Résumé: Il est bien connu  que pour beaucoup de structures géométriques, dites rigides, le groupe des automorphises a une structure de groupe de Lie.  La preuve de ce fait, fournit souvent l’information supplémentaire que la topologie de groupe de Lie est la topologie C^k pour un entier  k suffisamment grand.  Le but de l’exposé est de montrer que la topologie de Lie est en fait la topologie C^0 pour une large classe de structures, appelées « géométries paraboliques ».  Il s’agit de travaux en collaboration avec Karin Melnick.

Le Mardi 13 mars (CERI, salle S3) : Jialun Li (Université de Bordeaux). 

Titre : Décroissance des coefficients de Fourier des mesures stationnaires sur le cercle.

Résumé : Soit μ une mesure de probabilité borélienne sur SL2(R) avec un moment exponentiel, telle que le support de μ engendre un sous groupe Zariski dense dans SL2(R). On peux lui associer une unique mesure de probabilité sur le cercle, qui s’appelle la mesure μ stationnaire. On va montrer que les coefficients de Fourier de cette mesure tendent vers zéro. On va aussi parler son lien avec le théorème de renouvellement et le théorème de sommet-produit.

Le Mardi 6 mars (CERI, salle S6) : Agustin Moreno (Humboldt University of Berlin).

Titre : Algebraic torsion in higher-dimensional contact manifolds.

Résumé : Using the notion of algebraic torsion due to Latschev-Wendl, we construct an infinite family of non-diffeomorphic 5-dimensional contact manifolds with order of algebraic torsion 2, but not 1. These are higher-dimensional versions of 3-dimensional examples by Latschev-Wendl. Time permitting, we sketch a proof of the fact that Giroux torsion implies algebraic 1-torsion in higher-dimensions, using a suitable notion of spinal open books. This was conjectured by Massot-Niederkrueger-Wendl. It follows that our examples are higher-dimensional instances of contact manifolds which are tight, non-fillable but have no Giroux torsion.

Le Mardi 20 février (CERI, salle S8) : Jacques Féjoz (Université de Paris-Dauphine).

Titre : Billiards linéaires et relations lagrangiennes.

Résumé : On considère une dynamique non-déterministe de billard linéaire, motivée par la limite des hautes-énergies du problème des N corps. Une trajectoire est une courbe polygonale par morceaux, qui se réfléchit sur un nombre fini de sous-espaces vectoriel de l’espace euclidien, à vitesse et quantité de mouvement constantes. L’itinéraire d’une trajectoire est la suite des sous-espaces de collision. Dans une série d’articles remarquables, Burago-Ferleger-Kononenko ont démontré que tout itinéraire est non seulement fini, mais de longueur uniformément bornée pour un billiard linéaire donné. Leur démonstration utilise des arguments de géométrie non-lisse. Combinant leur construction avec des idées de géométrie symplectique, nous montrons que l’espace des trajectoires d’itinéraire donné est une relation lisse lagrangienne, sur l’espace des droites affines de l’espace euclidien. Ceci est une collaboration avec Andreas Knauf et Richard Montgomery.

Le Mardi 13 février (CERI, salle S3) : Jérémie Brieussel (Université de Montpellier).

Titre : Vitesses des marches aléatoires dans les groupes de type finis.

Résumé : La vitesse d’une marche aléatoire désigne la distance moyenne au point de départ en fonction du temps. Etant donnée une fonction (régulière) entre \sqrt{n} et n, on construit un groupe (et une mesure de probabilité) dont c’est la fonction vitesse à constante multiplicative près. Le profil isopérimetrique et la compression L_p de ce groupe peuvent aussi etre calculés. Il s’agit d’un travail en commun avec Tianyi Zheng.

Le Mardi 6 février (CERI, salle S3) : Patrice Le Calvez (Sorbonne Université) .

Titre : Forcage d’orbites pour les homeomorphismes de surfaces.

Résumé : Dans un travail commun avec Fabio Tal, de l’université de Sao Paulo, nous établissons une théorie de forçage d’orbites pour les homéomorphismes de surfaces isotopes à l’identité, en termes d’isotopie maximales et de feuiiletages transverses. Nous en déduisons en  particulier des critères d’existence de fers à cheval.

Le Mardi 30 janvier (CERI, salle S3) : Umberto Hryniewicz (Universidade Federal do Rio de Janeiro).

Titre : Global surfaces of section: from Schwartzman cycles to pseudo-holomorphic curves.

Résumé : In this talk I would like to explain how pseudo-holomorphic curves can be used to improve existence results for global surfaces of section coming from Schwartzman-Fried-Sullivan theory. Of course one needs to restrict to a smaller class of flows, so called Reeb flows, but then  linking assumptions only need to be made on a much smaller set of invariant measures, namely those coming from specific sets of periodic orbits. Then, if time permits, I will discuss relations between Conely theory and homological obstructions to the existence of global surfaces of section. This is joint work with Pedro Salomao and Kris Wysocki.

Le Mardi 23 janvier (CERI, salle S6) : Sylvain Crovisier (Université de Paris-sud, Orsay).

Titre : Décomposition de la dynamique des difféomorphismes de surface d’entropie positive.

Résumé : Je vais présenter un travail obtenu en collaboration avec Jérôme Buzzi et Omri Sarig, donnant :
(1) la décomposition des difféomorphismes de surface d’entropie positive à partir de leurs classes homoclines (ce qui généralise le théorème de décomposition spectrale de Smale pour les difféomorphismes hyperboliques),
(2) le codage des classes homoclines par un décalage Markovien dénombrable transitif (une version locale d’un théorème de Sarig),
(3) la finitude de l’ensemble des mesures d’entropie maximale ergodiques.

Le Mardi 16 janvier (CERI, salle S6) : Sanjay Ramassamy (ENS de Lyon).

Titre : La dynamique de Miquel sur les agencements de cercles.

Résumé : Les agencements de cercles sont une des façons d’uniformiser des graphes sur des surfaces, en les plongeant de telle sorte que chaque face admette un cercle circonscrit. Dans cet exposé, je décrirai un système dynamique sur les agencements de cercles avec la combinatoire du réseau carré, la dynamique de Miquel. Sa définition repose sur un théorème classique de géométrie du plan, le théorème des six cercles de Miquel. Je présenterai certaines propriétés de cette dynamique, suggérant son caractère
intégrable.
Travaux en partie en collaboration avec Alexey Glutsyuk (ENS de Lyon).

Le Mardi 9 janvier (CERI, salle S6) : Artem Pulemotov (University of Queensland).

Titre : The prescribed Ricci curvature problem on homogeneous spaces.

Résumé : We will discuss the problem of recovering the “shape” of a Riemannian manifold M from its Ricci curvature. After reviewing the relevant background and the history of the subject, we will focus on the case where M is a homogeneous space for a compact Lie group.

Le Mardi 12 décembre (CERI, salle S3) : Michele Triestino (Université de Bourgogne).

Titre : Actions C1 de groupes d’homéomorphismes projectifs par morceaux.

Résumé : Ghys et Sergiescu ont démontré dans les années 1980 que les groupe de Thompson T (et donc F) admet des action C^\infty sur le cercle. Ils démontrent en fait que l’actions standard est topologiquement conjugué à une action lisse. Plus récemment, Monod a introduit une famille de groupes d’homéomorphismes projectifs par morceaux qui sont non-moyennables et sans sous-groupes libres. On démontre que les actions de ces groupes ne sont pas conjuguées à des actions lisses et, pour certains de ces groupes, même qu’ils n’ont pas d’actions fidèles C^1. L’obstruction vient de la présence de points fixes hyperboliques pour actions C^1.

Il s’agit d’un travail en commun avec Christian Bonatti et Yash Lodha.

Le Jeudi 30 novembre  (CERI, salle S3) : Victor Guerasimov (Universidade Federal de Minas Gerais).

Titre : Random walk on groups: Martin Boundary and Floyd boundary.

Résumé : Asymptotic behavior of random walk on a group G reflect algebraic and geometric properties of G providing a new viewpoint on the group. On the other hand many discrete random processes can be interpreted as random walks on certain artificial « spaces ». If such a space is sufficiently symmetric, then problems can be reduced to the study of random walk on a group. A random walk on a group. A random walk on G is determined by a probability measure μ on G . The probability of transition from x to xs is declared to be μ ( s ). This defines a left-invariant Markov chain with state set G. If G is a dense open discrete part of some compactum K then a random trajectory can converge to a point at the boundary ∂G⊂K. The Martin compactification of a pair ( G, μ ) is the « biggest » compact extension of G such that, almost surely, i.e. with probability 1, a random trajectory converges to a point at the boundary ∂_M G. Any information about ∂_M G for a particular group G is actually about the asymptotic behavior of the random walk. However a complete description of the Martin boundary is known only for narrow classes of groups. Fortunately, for any Gromov hyperbolic group G , ∂_M G coincides with the geometric boundary ∂_∞ G. We give a «low bound » for the complexity of the Martin boundary (assuming that the support of μ is finite). We compare ∂_M G with another well-known boundary of geometric nature called the Floyd boundary. Namely, the identity map G → G extends to a continuous equivariant map φ from the Martin compactification to the Floyd compactification. We study the φ -preimages of points. In particular, the preimage of a point is a single point almost shurely. I will speak about probabilistic and dynamical corollaries of this result. Most applications concern the relatively hyperbolic groups.

Co-authors: I. Gekhtman (Yale), L. Potyagailo (Lille), Wen-Yuan Yang (Beijin).

Publication: arXiv:1708.02133v1 [math.GR]

Le Mardi 21 novembre (CERI, salle S8) : Emmanuel Opshtein (Université de Strasbourg).

Titre : Rigidité C^0 des sous-variétés Lagrangiennes.

Résumé : Un homéomorphisme symplectique est un homéomorphisme qui est limite uniforme de difféomorphismes symplectiques. Le théorème de rigidité d’Eliashberg-Gromov montre que la géométrie induite par ces homéomorphismes est intéressante, et son étude est au centre de cet exposé. Plus spécifiquement, on s’intéresse dans cet exposé à l’action des homéomorphismes symplectiques sur les sous-variétés Lagrangiennes. On démontre que deux invariants classiques de ces variétés lagrangiennes (le morphisme d’aire et l’indice de Maslov) sont invariants par homéomorphismes symplectiques. Travail en collaboration avec C. Membrez.

Le Mardi 14 novembre  (CERI, salle S8) : Anna Florio (Université d’Avignon).

Titre : Torsion et nombre d’enlacement pour des difféomorphismes des surfaces.

Résumé : l’indice de Maslov asymptotique nous dit à quelle vitesse asymptotique  tournent les vecteurs tangents d’une surface, relativement à la dynamique linéarisée (héritée du difféomorphisme). Dans cet exposé, après avoir défini l’indice de Maslov asymptotique, appelé aussi Torsion, pour des difféomorphismes des surfaces, on montrera un résultat qui lie la Torsion au nombre d’enlacement entre deux points du plan $\R^2$. Pour terminer,  on donnera des résultats dans le cas spécifique des difféomorphisme de l’anneau déviant la verticale.

Le Mardi 24 octobre 2017 (CERI, salle S2-C040) : Sobhan Seyfaddini (Paris 6).

Titre : Rigidité des classes de conjugaison dans les groupes d’homéomorphismes
préservant l’aire.

Résumé : Motivé par la compréhension de la structure algébrique des groupes
d’homéomorphismes préservant l’aire, F. Beguin, S. Crovisier, et F. Le Roux ont
posé la question suivante : existe-t’il un  homéomorphisme hamiltonien dont la
classe de conjugaison est dense ?  Nous obtenons une réponse négative en
comptant simplement les points fixes des homéomorphismes hamiltoniens.  Il
s’agit d’un travail en commun avec F. Le Roux et C. Viterbo.

Le Mardi 17 octobre 2017 (CERI, salle S3-C036) : Uira Matos (Université d’Avignon).

Title: Generalized k contact structures and Anosov actions
Abstract: In a most famous paper, Benoist, Y. Foulon, P and Labourie, F. proved a classification theorem for contact anosov flows with smooth anosov distributions. They showed that such flows are « essentialy »  geodesic flows on negatively curved symmetric spaces. We present a definition of generalized k contact structures contrasting it briefly with other pre-existing atempts to define a higher dimension analogue of contact structures. We present a large class of examples derived from real semisimple lie groups and present a toy model, to ilustrate the construction. We consider anosov actions associated with this generalized contac structure and sketch a proof that such manifolds are homogeneous.

 

Le Mardi 10 octobre 2017 (CERI, salle S4): Andrea Venturelli (Université d’Avignon).

Titre : Expansions hyperboliques dans le problème des N-corps – 2

Résumé : Cet exposé se situe dans la continuité du séminaire de la semaine dernière. Nous verrons comment on peut construire des expansions hyperboliques dans le problème des n corps, partant d’une configuration arbitraire et asymptotique à une figure limite arbitraire. L’idée de la preuve est de minimiser la distance de Jacobi-Maupertuis entre la configuration initiale x₀ et λa, où a est la configuration limite et λ est grand. Quand les corps sont loin les un des autres, l’attraction réciproque est faible, donc le minimiseur rentre définitivement dans tout cône centré autour de la configuration a, après un temps borné uniformément en fonction de λ. Cette propriété, dont la preuve est basé sur des estimations fines de la distance de Jacobi-Maupertuis, nous permet de déduire que la courbe limite a bien une figure limite, et que celle-ci  coïncide avec la configuration a. Il s’agit d’un travail en collaboration avec Ezequiel Maderna.

Le Mardi 3 octobre (CERI, salle S2-C040) : Ezequiel Maderna (Université de la République, Montevideo), 

Titre : Expansions hyperboliques dans le problème des N-corps – 1 .

Résumé :   Une expansion hyperbolique du problème des n corps est une solution particulière d’énergie positive, définie pour tout temps t>0, dans laquelle les distances mutuelles divergent linéairement. Il est connu depuis Chazy (1918) que pour ce type de mouvements il existe une figure limite et que celle ci dépend continuement des conditions initiales. Le but de l’exposé est celui de présenter un travail en collaboration avec A. Venturelli (Avignon) dans lequel on montre l’existence d’expansions hyperboliques avec figure limite et positions initiales des corps choisies arbitrairement. La démonstration se base sur l’étude géométrique des niveaux d’énergie positifs ainsi que des géodésiques minimisantes de la métrique de Jacobi-Maupertuis.

 

Le Mardi 19 septembre (CERI, salle S3-C036) : Olga Bernardi (Université de Padoue).

Title : Lyapunov functions and recurrent sets: from topological dynamics to weak KAM theory.
Abstract. The aim of this talk is to clarify the intimate relations between Lyapunov functions and chain recurrent sets. The study of this subject comes from a seminal paper by Conley and has had recent important advances by Fathi and Pageault. After an explanation of the state of the art, we present the following improvement of the pre-existent results: every continuous flow on a compact metric space, uniformly Lipschitz continuous on the compact sets of a time, admits a Lipschitz continuous Lyapunov function strict –that is strictly decreasing– outside the strong chain recurrent sets of the flow. We then give two consequences of this theorem. From one hand, we characterize the strong chain recurrent sets in terms of Lipschitz continuous Lyapunov functions. From the other hand, in the case of a flow induced by a vector field, we establish a sufficient condition for the existence of a $C^{1,1}$ strict Lyapunov function and we also discuss various examples. This is a joint work with A. Florio.

Le jeudi 29 juin : Mini colloque d’analyse géométrique,  entre 14h et 17h,
3 exposés de 45 mn de Piotr Chrusciel (Vienne), Romain Gicquaud (Tours),
Emmanuel Humbert (Tours); programme.

Le Jeudi 22 Juin: Journée FRUMAM Avignon-Marseille à St Charles.

Le Mardi 16 Mai: Alba Malaga (Paris 8, Saint Denis).

Titre : Dynamique générique du Wind-tree
Résumé : Le wind-tree est un exemple de système dynamique qui possède
une description très simple en même temps qu’une dynamique très riche.
C’est un cas particulier de billard: on a une particule qui se déplace
(le vent) tant qu’elle ne rencontre pas d’obstacle (les arbres) et qui
rebondi élastiquement sur chaque obstacle rencontré. Il y a une infinité
d’obstacles repartis irrégulièrement sur le plan. La dynamique dépendra
fortement de la distribution des obstacles. Les différentes
configurations vivent dans un espace de Baire — on peut donc se demander
ce qui arrive pour une configuration générique (c’est-à-dire appartenant
à un ensemble Gδ-dense de configurations).
Ceci est un travail en collaboration avec Serge Troubetzkoy.

Le Mardi 9 Mai: Nicolas Gourmelon (Bordeaux).

Titre : difféomorphismes projectivement Anosov des surfaces.

Résumé: Un difféomorphisme f de M est dit projectivement Anosov (PA) s’il existe une décomposition $TM=E\oplus F$ telle que les fibrés projectifs PE et PF soient respectivement répulseur et attracteur pour le cocycle projectif PDf. Les difféomorphismes PA des surfaces ont été décrits par Asaoka, sous l’hypothèse que les distributions E et F sont lisses (condition très forte, même pour f analytique).

Nous omettons cette hypothèse et identifions 3 classes fondamentales de PAs : les Anosov, les concaténations de twists, les damiers. Nous classifions les PAs comme déformations isotopiques de ces modèles fondamentaux. Ceci est un travail en commun avec R. Potrie.

Le Mardi 2 Mai: François Beguin (Paris 13) et Sergio Fenley (FSU).

Title:Free Seifert fibered pieces of pseudo-Anosov flows

Abstract – We prove a structure theorem for pseudo-Anosov flows
restricted to Seifert fibered pieces of three manifolds.
The piece is called periodic if there is a Seifert fibration so
that a regular fiber is freely homotopic, up to powers, to a closed
orbit of the flow. A non periodic Seifert fibered piece is called
free. In this talk we consider free Seifert pieces. We show that,
in a carefully defined neighborhood of the free piece, the
pseudo-Anosov flow is orbitally equivalent to a hyperbolic blow
up of a geodesic flow piece. A geodesic flow piece is a finite
cover of the geodesic flow on a compact hyperbolic surface, usually
with boundary (a union of geodesics). The proof uses an associated
convergence group theorem, hyperbolic blow ups and models
of geodesic flows. This is joint work with Thierry Barbot.

Le Mardi 25 Avril: Abed Bounemoura (CNRS/Paris Dauphine).

Titre : Théorie KAM pour des fonctions ultra-differentiables

Résumé : Nous proposons une extension de la théorie KAM pour une classe de Hamiltoniens ultra-differentiables (incluant les cas analytique et Gevrey) sous une condition arithmétique adaptée (correspondant à la condition de Bruno-Rüssmann dans le cas analytique). Travail avec Jacques Féjoz.

Le Mardi 18 Avril: Vincent Pecastaing (Luxembourg).

Dynamiques conformes de groupes de Lie simples en géométrie lorentzienne

Un théorème de Zimmer des années 1980 assure qu’à isomorphisme local près,
SL(2,R) est le seul groupe de Lie simple et non-compact agissant
isométriquement sur des variétés lorentziennes de volume fini. Peu après,
Gromov caractérisait la géométrie des variétés sur lesquelles de telles
dynamiques se produisent.

Dans cet exposé, je m’intéresserai au problème analogue pour des actions
conformes de groupes de Lie semi-simples. Une plus grande famille de
groupes apparaît, et certains d’entre eux agissent sur de nombreuses
variétés non-conformément équivalentes.

Néanmoins, nous verrons que la géométrie locale est prescrite par
la présence d’un groupe simple non compact de transformations conformes.
Ceci découlera d’une analyse de la dynamique de flots hyperboliques du
groupe. J’expliquerai en quoi ceci a des implications sur la forme
générale du groupe conforme d’une variété lorentzienne compacte, et
discuterai quelques extensions pseudo-Riemanniennes.

Le Jeudi 6 Avril: Gael Meigniez et Olga Romaskevitch.

Reflection complexe et porisme de Poncelet.

Dans un billard elliptique, il existe une famille à un paramètre des trajectoires 3-périodiques tangentes à une ellipse de Poncelet. On considère les cercles inscrits dans les triangles correspondants. Ils s’avère que les centres de ces cercles parcourent un ellipse. Je vais raconter une preuve de ce théorème qui utilise l’approche complexe, l’idée étant de complexifier la loi de réflexion.

Le Mardi 28 Mars: Greg Mc Shane (Grenoble)

Titre : volume hyperboliques de suspension d’un automorphisme de surface et entropie

Résumé : il est naturel de chercher des rapports entre divers invariants de variétés de dimension 3. En particulier, le volume hyperbolique de suspension d’un automorphisme pseudo Anosov d’une surface et son entropie. On présente un travail en commun avec S. Kojima où on majore le volume par une constante (explicite) fois l’entropie. La preuve utilise le volume renormalisé d’une variété quasi-fuchsienne. On donnera la définition du volume renormalisé d’une variété quasi-fuchsienne et ses propriétés principales, a savoir, commensurabilité avec le volume du coeur convexe et formule de Schlaffli due a Krasnov-Schlenker. On discutera ses rapports avec la métrique de Weil-Petersson et des questions ouvertes.

Le Mardi 7 Mars: Rafael Ruggiero (Bresil).

Titre: Sur la conjecture de Hopf pour les métriques Finsler k-basiques sur le tore

Résumé: Nous demontrons que toute métrique de Finsler analytiique, k-basique (cette à dire, la courbure drapeau ne dépend pas du drapeau) dans le tore de dimension 2 sans points conjugués est plate. Ce résultat répond affirmativement à la conjecture de Hopf dans la catégorie des métriques k-basiques qui contient l’ensemble des Métriques Riemanniennes. La démonstration combine la théorie des feuilletages (classes de Godbillon-Vey) et la géométrie des métriques de Finsler k-basiques.

Le Mardi 28 Février: Nicolas de Saxcé (Paris 13).

Titre: Approximation diophantienne sur des variétés

Résumé: Étant donnée une sous-variété M de l’espace projectif ou affine, on cherche à comprendre comment les points de M peuvent être approchés par des points rationnels. Nous nous intéresserons en particulier aux points à coordonnées algébriques et aux points choisis aléatoirement sur M, et nous verrons que ces deux problèmes admettent des solutions similaires.

Le Mardi 21 Février: Qiyu Chen (Universite du Luxembourg).

Motivated by the work of Barbot, Béguin and Zeghib about the k-foliations (constant Gauss curvature foliations) of 3-dimensional GHMC spacetimes of constant curvatures, we study the analogous question for convex GHM AdS manifolds with particles (cone singularities of angles less than \pi along timelike curves). We will show that the complement of the convex core in a convex GHM AdS manifold with particles admits a unique k-foliation. As an application of this result, we generalize to hyperbolic surfaces with cone singularities (of angles less than \pi) a number of results concerning landslides. This is a joint work with Jean-Marc Schlenker.

Le Mardi 7 Février: Chiara Khayamian (Avignon).

Titre: Quasi periodic solutions for non-linear forced Klein Gordon equation on Zoll manifolds.

Le Jeudi 5 Janvier: Gye-Seon Lee (Universität Heidelberg).

Titre: Convex real projective Dehn fillings

Résumé: Thurston’s hyperbolic Dehn surgery theorem says that if M is a cusped hyperbolic three dimensional manifold then almost all Dehn fillings of M admit a hyperbolic structure. However, the hyperbolic Dehn filling is impossible for dimension bigger than three. In this talk, I will give the first examples of cusped hyperbolic four dimensional manifolds whose Dehn fillings admit a convex real projective structure. Joint work with Suhyoung Choi and Ludovic Marquis.

Le Mardi 3 Janvier: Dominique Malicet (Rio).

Titre: Rigidité et exposants de Lyapounov

Programme 2016 (le Mardi à 14h30)

Le 13 Décembre: Vincent Humilière (Paris 6).

Titre: Conjecture d’Arnold et topologie symplectique.

Résumé: Une très célèbre conjecture d’Arnold, maintenant essentiellement établie, affirme que le nombre de points fixes d’un difféomorphisme hamiltonien est plus grand qu’une certaine constante qui ne dépend que de la topologie de la variété ambiante. Dans tous les cas, cette constante est au moins 2. On cherche à comprendre si ce résultat reste vrai si l’on remplace difféomorphisme par homéomorphisme dans les hypothèses. Après avoir introduit la notion d’homéomorphisme symplectique/hamiltonien, j’expliquerai l’idée de la construction d’un homéomorphisme hamiltonien ayant un unique point fixe sur toute variété symplectique compacte de dimension au moins 4. C’est un travail en commun avec Lev Buhovski et Sobhan Seyfaddini.

Le 29 Novembre: Yannick Bonthonneau (CNRS, Rennes).

Résonances de Ruelle pour des variétés à pointes.

Dans le cadre de travaux en cours avec Tobias Weich, j’expliquerai comment on peut prolonger la résolvante du flot géodésique de certaines variétés de volume fini. J’utiliserai des techniques dites de «Faure-Sjostrand» que je présenterai d’abord. Il s’agira ensuite de voir comment on peut rajouter un ingrédient magique pour atteindre le but recherché : définir un spectre de Ruelle.

Le 22 Novembre: Martin Vogel (Orsay).

Titre: Statistique spectrale des opérateurs non-auto-adjoints aléatoires

Résume:
Il est bien connu que le spectre d’un opérateur non-normal peut être extrêmement
sensible même aux perturbations très faibles. Exploitant ce phénomène, une suite
de travaux de Sjöstrand, Hager, Bordeaux-Montrieux, Zworski et Christiansen montre
que nous avons une loi de Weyl probabiliste pour une grande classe des opérateurs
(pseudo-)différentiels non-normaux dans la limite semiclassique soumis à des petites
perturbations aléatoires.
Nous allons discuter des résultats récents concernant la statistique spectrale dans
certains cas et des problèmes ouverts.

C’est un travail conjoint avec Stéphane Nonnenmacher.

Le 15 Novembre: Xifeng Su.

Title: The higher dimensional Aubry-Mather model in the continuous limit and related topics

Abstract: This talk will introduce several models of classical mechanics (especially solid state physics) and quantum mechanics for crystals and quasi-crystals. The models in solid state physics are the generalized Frenkel-Kontorova models on the crystals and quasi-crystals while the models in quantum mechanics will be related to the spectrum of the Schodinger operators.

After surveying on these models, I will concentrate on the Aubry-Mather models (thermodynamic formalism after freezing the system) and talk about the corresponding discrete weak KAM theory. The existence of the discrete weak KAM solutions are related to the additive eigenvalue problem in ergodic optimization. I will show that the discrete weak KAM solutions converge to the weak KAM solutions for the autonomous Tonelli Hamilton-Jacobi equations as the time step goes to zero.

This is a joint work with P. Thieullen.

Le 8 Novembre: Nguyen Viet Dang (Lyon Claude Bernard).

Titre: Résonances de Ruelle des flots de gradients et complexe de
Thom-Smale-Witten.

Résumé:
Ceci est un travail en commun avec Gabriel Rivière de l’université de
Lille 1. On se donne une fonction de Morse $f$ sur une variété Riemannienne
et on suppose que le flot gradient remplit la condition de Smale. Le
but est d’étudier la dynamique en temps long du flot de
gradient en utilisant des méthodes fonctionnelles. Cette étude
repose sur la détermination du spectre (les fameuses résonances de
Ruelle) du générateur infinitésimal du flot.

Dans un second temps, nous montrerons certaines applications en
topologie différentielle de cette « quantification ». En s’inspirant de
travaux de Laudenbach et Harvey–Lawson et en nous basant sur
le formalisme de la mécanique quantique supersymétrique, nous donnons
une interprétation spectrale du complexe de Thom-Smale-Witten.

Le 25 Octobre: Andrea Venturelli (Avignon).

Titre : Un Théorème à la Birkhoff pour des Hamiltoniens de Tonelli non autonomes (en collaboration avec Marie-Claude Arnaud)

Résumé : En 1920, G.D. Birkhoff montra que toute courbe essentielle invariante pour un difféomorphisme symplectique exact de l’anneau déviant la verticale est un graphe Lipschitz sur la base. On peut se demander si un résultat analogue est encore vraie pour un flot hamiltonien sur un fibré cotangent T*M, en dimension quelconque.

Dans ce cas, la condition twist est naturellement remplacé par la condition de Tonelli sur l’hamiltonien. En 1992, M. Bialy et L. Polterovich on montré que pour un hamiltonien de Tonelli autonome sur T*M, toute sous-variété lagrangienne L hamiltoniennement isotope à un graphe lagrangien est elle meme un graphe, si la dynamique sur L est récurrente par chaine. En 2010, Marie-Claude Arnaud a montré que cette hypothèse dynamique sur L n’est pas nécessaire. Dans ce travail, nous montrons que ce résultat est encore vrai pour un hamiltonien de Tonelli 1-périodique par rapport au temps. La démonstration utilise la théorie des fonctions génératrices et des sélecteurs de graphe, et la Théorie KAM faible.

Le 11 Octobre: Charles Hadfield (ENS Ulm).

titre : Résonances quantiques sur les variétés asymptotiquement hyperboliques

résumé : sur une variété asymptotiquement hyperbolique, le prolongement méromorphe de la résolvante du laplacian a été établie par Guillarmou [1] après les travaux de Mazzeo et Melrose [2]. Un tel prolongement permet ensuite d’étudier plusieurs opérateurs (de diffusion, de Poisson, etc) qui sont souvent liés à la structure conforme au bord de la variété [3]. Récemment, Vasy a pu établir un résultat similaire pour le laplacian de Hodge [4]. On parlera de sa méthode et l’appliquera aux tenseurs symétriques avec le laplacian de Lichnerowicz afin de comprendre certaines questions autour de la linéarisation des équations de gravité.

[1] Guillarmou – Mermorphic properties of the resolvent on asymptotically hyperbolic manifolds.

[2] Mazzeo, Melrose – Meromorphic extension of the resident on complete spaces with asymptotically constant negative curvature

[3] Fefferman, Graham – Conformal invariants

[4] Vasy – Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces

Le 4 Octobre: Marco Mazzucchelli (ENS Lyon).

PERIODIC ORBITS OF EXACT MAGNETIC FLOWS ON SURFACES

A celebrated open conjecture in Riemannian geometry and Hamiltonian dynamics claims that every closed Riemannian manifold of dimension at least 2 possesses infinitely many closed geodesics. A remarkable example due to Katok shows that the conjecture fails for Finsler spheres and Finsler projective spaces. In my talk, I will discuss the periodic orbits problem in the more general setting of Tonelli Hamiltonian systems. The dynamics of these systems on high energy levels is well known: it is conjugated to a Finsler geodesic flow. In the talk, I will focus on low energies, more precisely on energies below the so-called Mañé critical value of the universal covering. After introducing the setting, I will present recent results on the existence of periodic orbits in this range. The talk will be based on three joint works with Abbondandolo-Macarini-Paternain, with Asselle, and with Abbondandolo-Asselle-Benedetti-Taimanov.

Le 20 septembre: Tali Pinsky (Mumbai).

Title: An upper bound for volumes of geodesics

Abstract: Consider a closed geodesic $\gamma$ on a hyperbolic surface, embedded in the unit tangent bundle. If $\gamma$ is filling its complement is a hyperbolic three manifold, and thus has a well defined volume. I will discuss how to use Ghys’ template for the geodesic flow on the modular surface to obtain an upper bound for this volume in terms of the length of $\gamma$. This is joint work with Maxime Bergeron and Lior Silberman.

******Pause estivale******

Le 6 Juillet : Ilia Smilga.

Titre: Groupes affines libres discrets agissant proprement.

En 1983, Margulis a trouvé un exemple de groupe libre de transformations
affines (de partie linéaire Zariski-dense dans $SO(2,1)$) discret et
agissant proprement sur l’espace affine $\mathbb{R}^3$. Depuis, seuls
quelques nouveaux exemples ont été trouvés. Nous allons présenter un
moyen possible de classifier toutes les adhérences de Zariski de tels
groupes. Étant donné un groupe de Lie réel semisimple $G$ et une
représentation $\rho$ de $G$ sur un espace vectoriel $V$, nous allons
donner un critère algébrique simple qui est suffisant (et
conjecturalement nécessaire) pour que le groupe affine $G \ltimes V$ ait
un sous-groupe libre Zariski-dense discret et agissant proprement.

Le 5 Juillet : Andrew Yarmola.

Titre : Basmajian’s identity for Hitchin representations.

Abstract: Basmajian’s identity gives the area of the totally geodesic boundary of a compact hyperbolic manifold as a summation over the orthospectrum. We will demonstrate an extension of this identity to the setting of Hitchin representations of surface groups. For 3-Hitchin representations, the identity has a natural geometric interpretation analogous to the hyperbolic setting. A Hitchin representation of a closed surface gives rise to a Frenet curve in projective space, which supports a Lebesgue measure. As part of our proof, we show that the limit set of an incompressible subsurface of a closed surface is measure zero. This generalizes a classical result in hyperbolic geometry. Time permitting, we will discuss a relationship between Basmajian’s identity and the McShane-Mirzakhani identity in both the hyperbolic and Hitchin settings. This is joint work with Nicholas Vlamis.

Le 21 Juin : Olga Romaskevich (ENS Lyon).

Titre: Chaînes de Markov et moyennes sphériques pour les actions de groupes libres

Résumé: Nous étudions les chaînes de Markov qui proviennent d’actions préservant la mesure de groupes libres de type fini sur un espace de probabilité. L’ensemble des générateurs d’un groupe libre est muni d’une structure de chaîne de Markov généralisée. Sous des conditions faibles (données par des inégalités) sur la matrice stochastique P qui définit la chaîne, nous prouvons la convergence des moyennes sphériques. Jusqu’ici, cette convergence n’était connue que pour les chaînes de Markov symétriques (données par des égalités) ; maintenant elle est établie sur un ouvert de l’espace des matrices stochastiques.

Ce travail est une collaboration avec Lewis Bowen et Alexander Bufetov.

Le 14 Juin : Journée FRUMAM Avignon-Marseille (à Ste Marthe, salle 2E01).

Journée thématique « Systèmes dynamiques hyperboliques ».

Le programme détaillé des 4 exposés est ici.

Le Lundi 6 Juin : Anete Suares (Recife).

Titre: An Existence Proof of a Symmetric Periodic Orbit in The Octahedral Six-Body Problem.

Résumé: The Variational Method applied to the n-body Newtonian problem allows demonstrate the existence of periodic orbits, in most cases with some symmetry. It was ex- ploited by the Italian school in the 90’s (Coti-Zelati, Degiovanni-Gianonni-Marino, Serre-Terracini). They give us the new periodics solutions to potential which satisfy a hypothesis called strong force, which excludes the newtonian potential. The hypothesis strong force was introduced by Poincaré. In this talk we propose a variational existence proof of a symmetric periodic orbit in the octahedral six-body problem with equal masses. This problem is the Newtonien 6BP with equal masses such that each two bodies are in one of the three axes mutually orthogonal.

Le 31 Mai : Thomas Alazard (ENS).

Titre:

Contrôle des vagues

abstract:

Il s’agit d’un travail en collaboration avec Pietro Baldi (Naples) et Daniel Han-Kwan (CNRS et Polytechnique) qui porte sur la question suivante : quelles ondes peuvent être générées en soufflant sur une partie localisée de la surface libre d’un liquide. Notre résultat principal affirme que l’on peut générer, en temps arbitrairement court, toute onde de gravité-capillarité 2D, de petite amplitude et périodique en x. Précisément, nous montrons que l’équation d’Euler à surface libre avec tension de surface est localement exactement contrôlable. La démonstration repose sur une analyse paradifférentielle de l’équation, des estimations d’observabilité et un schéma quasi-linéaire.

Le 17 Mai : Maxime Ingremeau (Orsay).

Titre : Ondes planes tordues en courbure négative.

Résumé :
Les ondes planes tordues sont une famille de fonctions propres généralisées du laplacien sur des variétés euclidiennes à l’infini, pouvant s’écrire comme la somme d’une onde plane et d’une partie purement sortante. Si la variété est de courbure négative ou nulle, et sous une condition sur la pression topologique de l’ensemble capté de la dynamique classique, nous montrerons une formule donnant une description précise des ondes planes tordues dans la limite semi-classique. Nous en déduirons des résultats sur les mesures semi-classiques, les normes C^l et les ensembles nodaux des ondes planes tordues. Si le temps le permet, nous présenterons aussi une borne inférieure sur le nombre de domaine nodaux de la somme de deux ondes planes tordues, pour une métrique générique.

Le 10 Mai : Zhiyan Zhao (Nice).

Titre: Localisation et transport dans l’équation de Schrödinger discrète unidimensionelle.

Le 3 Mai: Sergio Fenley (Florida State ).

Title – QUASIGEODESIC PSEUDO-ANOSOV FLOWS in HYPERBOLIC 3-MANIFOLDS

Speaker – Sergio Fenley, Princeton University and Florida State
University

We obtain a simple topological and dynamical systems
condition which is necessary and sufficient for an arbitrary
pseudo-Anosov flow in a closed,
hyperbolic three manifold to be quasigeodesic.
Quasigeodesic means that orbits are efficient in measuring
length up to a bounded multiplicative distortion when lifted
to the universal cover.
We prove that such flows are quasigeodesic if and only if there is
an upper bound, depending only on the flow,
to the number of orbits which are
freely homotopic to an arbitrary closed orbit of the flow.

Le 26 Avril : Thomas Barthelmé.

Titre: Compter les orbites d’un flot d’Anosov dans une classe d’homotopie libre

Résumé:
Depuis les résultats de Bowen et Margulis (années 60-70) donnant une estimée du taux de croissance du nombre d’orbites périodique d’un flot d’Anosov, il y a eu beaucoup de travaux cherchant a estimer le nombre d’orbites périodique d’un système dynamique sous certaines contraintes.
Si l’on se limite aux seuls flots d’Anosov, ces travaux ont essentiellement été dans deux directions: obtenir des estimées plus précises en général, et estimer la croissance du nombre d’orbites périodique dans une classe d’homologie fixée.
Au cours de ce séminaire, je parlerai d’une nouvelle direction: estimer la croissance du nombre d’orbites périodique dans une classe d’homotopie libre.

Malgré l’intuiton que l’on peut avoir lorsque l’on ne concidère que les deux exemples les plus classique de flots d’Anosov (c’est-à-dire le flot géodésique d’une variétés Riemannienne à courbure négative et les suspensions des difféomorphismes d’Anosov), j’expliquerais pourquoi beaucoup (voir même « la plupart ») des flots d’Anosov en dimension 3 ont des classes d’homotopie libre qui contiennent une infinité d’orbites périodiques distinctes. Ceci rendant la question de leur croissance non-trivial.
De plus, on obtiendra une réponse (en dimension 3) à une vieille question de Plante et Thurston (1972): Soit M une variété admettant un flot d’Anosov. Est-ce que le nombre de classes de conjugaison dans le groupe fondamental de M croit de manière exponentiel en fonction de la période de la plus petite orbite périodique repésentant cette classe?
(Ce travail est en collaboration avec Sergio Fenley)

Le 5 Avril : Jacopo de Simoi (IMJ).

Conjecture de Birkhoff et rigidité spectrale

En 1927 George D. Birkhoff a conjecturé que les seules tables de billard
intégrables sont les tables elliptiques. Je vais démontrer qu’une version de
cette conjecture classique est vraie pour les tables strictement convexes qui
sont suffisamment près d’une ellipse d’excentricité suffisamment petite. Les
méthodes utilisées pour la démonstration donnent des réponses à certaines
questions de rigidité spectrale. Plus précisément: considère une famille
lisse de domaines convexes lisses, avec symétrie axiale et suffisamment près
d’un cercle. On preuve que si la famille laisse invariant le spectre des
longueurs des géodésiques fermées, elle est nécessairement une famille
isométrique. Ceci donne une réponse partielle à une question de P. Sarnak.
Travail en collaboration avec A. Avila + V. Kaloshin et V. Kaloshin + Q. Wei.

Le 29 Mars : Jessica Massetti (IMCCE, observatoire de Paris).

Titre: Forme normale de Moser et théorie KAM dissipative.

En 1967, J. Moser établit un remarquable théorème de forme normale pour des perturbations analytiques de champs de vecteurs analytiques possédant un tore invariant réductible quasi-périodique de fréquences Diophantiennes.
A partir de cette forme normale, dans des cas particuliers issus de la mécanique hamiltonienne et de ses versions dissipatives issues de la mécanique céleste, on montre l’existence de formes normales particulières remarquables : « à la Herman » et « à la Rüssmann ».
De ces formes normales, il est possible de déduire des résultats de type KAM si le système considéré dépend d’une  »bonne façon » d’un nombre suffisant de paramètres – internes ou externes au système. Le résultat de persistance est ainsi obtenu à partir d’une technique d’élimination de paramètres, mise au point par Herman, Rüssmann et d’autres auteurs dans les années 80-90.

Dans le cadre « géométrique » ainsi construit, le problème spin-orbite dissipatif en Mécanique Céleste (présenté récemment par différents auteurs dont Celletti-Chierchia et Locatelli-Stefanelli), est traité plus aisément : déduire la persistance d’attracteurs quasi-périodiques devient un cas particulier de petite dimension. En outre, le processus d’élimination des paramètres met en relief des relations entre dissipation, fréquence et perturbation propres au système spin-orbite, et ouvre la voie à une étude plus globale dans l’espace des paramètres sur la persistance de différents types de mouvements aux perturbations.

Le 22 Mars : Noureddine et Salima Rahmani (USTOMB Oran).

Exposé 1 : Sur lagéométrie associée aux variétés Pseudo-riemanniennes symétriques, par Noureddine Rahmani.

Exposé 2 : Géométrie Lorentzienne dugroupe de Heisenberg, par Salima Rahmani.

Le 8 Mars : Vincent Pécastaing (Université Humboldt Berlin).

Titre : Actions conformes lorentziennes de groupes de Lie semi-simples

Résumé : Un résultat de R. Zimmer remontant aux années 1980 stipule qu’à
isomorphisme local près, SL(2,R) est le seul groupe de Lie simple non
compact qui peut agir par isométries sur une variété lorentzienne de
volume fini. Sa preuve s’appuie sur des résultats de théorie ergodique, et
il est essentiel que la dynamique du groupe préserve une mesure finie.
Si nous affaiblissons l’hypothèse en considérant maintenant des dynamiques
conformes de groupes, nous perdons l’existence d’une mesure finie
invariante, même lorsque la variété est supposée compacte.
Néanmoins, les structures conformes sont rigides en dimension au moins 3
et il semble donc raisonnable de tenter de décrire, géométriquement et
dynamiquement, les actions de groupes qui préservent de telles structures
géométriques. Dans cet exposé, je présenterai des résultats allant dans
cette direction, lorsque le groupe qui agit est semi-simple.

Le 1er Mars : Mickaël Kourganoff (ENS Lyon).

– Flots géodésiques Anosov, systèmes articulés et billards

Considérons un ellipsoïde et faisons tendre l’un de ses trois axes vers zéro : l’ellipsoïde s’aplatit et se rapproche d’une ellipse dans le plan formé par les deux autres axes. Comme l’avait remarqué Birkhoff, le flot géodésique sur l’ellipsoïde converge vers le flot de billard sur l’ellipse. En fait, ce phénomène est bien plus général : on énoncera un théorème analogue qui s’applique à presque n’importe quelle surface de R^3 que l’on aplatit selon un axe. De plus, si le billard obtenu à la limite est dispersif, alors le flot géodésique sur la surface est Anosov (les deux systèmes présentent alors le même type de dynamique chaotique). On utilisera enfin ce dernier résultat pour donner un nouvel exemple concret de système physique Anosov, un système articulé à cinq tiges.

Le 23 Février : Suhyoung Choi (Kaist Korea).

Titre: Tropical computational experimentations in compactifications of the deformation spaces of convex real projective structures on 2-orbifolds and surfaces.

Abstract: We present some compactification methods using the traces of the closed curves on surfaces. The basic methods are Daniele Alessandrini’s work and the trace computations on the deformation spaces. We present some experimental evidences using concrete methods. This is a joint work in progress with Daniele Alessandrini.

Le 16 Février : Emmanuel Schenck (Paris 13).

Titre : Formule des traces en temps long et application au comptage de
résonances dans une bande.
Résumé : J’expliquerai comment, sur des variétés euclidiennes à
l’infini dont l’ensemble capté est hyperbolique, on peut obtenir des
bornes inférieures sur le comptage de résonances dans des bandes près
de l’axe réel en utilisant une formule des traces en temps long et des
fonctions test bien choisies.

Le 9 Février : Leo Brunswic (Avignon).

Titre: Espace de Teichmüller décoré, surfaces polyédrales et espace temps singulier.

Le 26 Janvier: Bassam Fayad (IMJ).

Titre: Autour de la stabilité des points fixes elliptiques.

Le 12 Janvier : Valentine Roos (ENS Paris).

Titre: Solutions faibles de l’équation de Hamilton-Jacobi.

Résumé : Après avoir présenté les aspects géométriques et dynamiques de l’équation de Hamilton-Jacobi, on cherchera à comparer deux types de solutions faibles, la solution de viscosité et la solution variationnelle, et à déterminer des critères pour décider si elles coïncident ou non en temps court.

PROGRAMME 2014-2015

25 juin 2015: Journée de Systèmes dynamiques Avignon-Marseille à Marseille

Frédéric Naud (Université d’Avignon): comptage dans les groupes géométriquement finis et résonances

François Ledrappier (University of Notre dame): Quotients de Rayleigh et familles équivariantes de mesures au bord

Frédéric Palési (AMU): Espaces de Teichmüller et représentations de groupes de surfaces

François Labourie (Université de Nice): représentation de groupes de surfaces dans SL(n R).

16 juin 2015 : Ana Rechtman (Université de Strasbourg). Topologie de l’ensemble minimal du piège de Kuperberg.

Le piège de K. Kuperberg permet de construire des exemples
de flots de classe $C\infty$, sans points fixes et sans orbites
périodiques dans toute variétée fermée de dimension 3. Après
avoir expliqué la construction du piège de K. Kuperberg, je
vais présenter une description de l’ensemble minimal dans le
cas où celui-ci est de dimension topologique 2. Dans ce cas,
l’ensemble est stratifié, avec une partie de dimension 2 et
une autre de dimension 1 qui est dense dans la précedente.

26 mai 2015 : Pierre-Antoine Guihéneuf (Université Paris Sud). Dynamique des discrétisations spatiales de difféomorphismes conservatifs génériques.

Résumé : Dans cet exposé, nous aborderons la question suivante : étant donnée une application continue $f$ d’une variété compacte $X$ dans elle-même, que se passe-t-il lorsqu’on itère $f$ avec un ordinateur ? Celui-ci travaille à précision numérique fixée (par exemple 10 décimales), on modélise cela par le fait qu’il itère une discrétisation de $f$ sur une grille de $X$. On se
demande alors si la dynamique de cette discrétisation est proche de celle de l’application de départ $f$ ou non.

Nous aborderons cette question dans le cas où $f$ est un
$C^1$-difféomorphisme conservatif générique du tore ; en particulier, nous
montrerons que le comportement des discrétisations est moins irrégulier
que celui apparaissant pour les homéomorphismes génériques. Ces résultats
se basent sur une étude approfondie des discrétisations d’applications
linéaires, au cours de laquelle il sera question d’ensembles presque
périodiques ou de pavages réguliers de l’espace de dimension $n\ge 2$ par
des cubes.

12 mai 2015 : Ricardo Perez-Marco (Université Paris 13). Traitement unifié de formules de traces et formules explicites en Théorie des Nombres.

5 mai 2015 : Sergio Fenley (Florida State University). Counting closed orbits of Anosov flows in free homotopy classes (joint work with Thomas Barthelme of Penn State University).

Abstract : There are Anosov and pseudo-Anosov flows so that some orbits
are freely homotopic to infinitely many other orbits.
An Anosov flow is R-covered if either the stable or unstable foliations lift
to foliations in the universal cover with leaf space homeomorphic to the reals.
These are extremely common. A free homotopy class is a maximal collection
of closed orbits of the flow that are pairwise freely homotopic to each other.
We first construct explicit examples of Anosov flows with some infinite free homotopy classes.
Then we mention the result that if an R-covered Anosov flow has all free homotopy classes that are finite, then up to a finite cover the flow is topologically conjugate to either a suspension or a geodesic flow.
This is a strong rigidity result that says that infinite free homotopy classes
are extremely common amongst Anosov flows in 3-manifolds.

The second part of the talk is about analyzing growth of length of orbits
in a fixed infinite free homotopy class.
We analyse the interaction of such a free homotopy class with the torus decomposition of the manifold: for examples whether all orbits in the infinite free homotopy classes are contained in a Seifert piece or atoroidal piece. There is a natural ordering of an infinite subset of such a collection, indexed as (gamma_i).
We analyse the growth of the length of gamma_i as a function of i.
We obtain several inequalities: for example if the manifold is hyperbolic then the growth of length of gamma_i is exponential. These inequalities have consequences for the ergodic theory of the Anosov flow.

21 avril 2015 : Stefan Suhr (ENS Paris et Université Paris Dauphine). Construction of Zollfrei metrics on $3$-manifolds.

Abstract: Guillemin calls a compact Lorentzian $3$-manifold « Zollfrei » if
the geodesics flow on the nonzero lightlike vectors induces a fibration by
circles (especially all lightlike geodesics are closed). He conjectured
that these metric can only exist on $3$-manifolds covered by $S^2\times S^1$.
I will explain counterexamples on every nontrivial circle bundle over a
closed surface. If time permits I will discuss what additional assumptions
imply the conjecture and hint at what is the right conjecture in the
general case.

14 avril 2015 : Jean-Pierre Marco (Université Paris 6). Exemples simples de diffusion d’Arnold pour des difféomorphismes de $\A^2$.

Résumé : La diffusion d’Arnold est traditionnellement étudiée pour des perturbations de systèmes hamiltoniens complètement intégrables (ne dépendant que des actions) sur l’anneau $\A^n$, $n\geq3$.
Dans ce cadre, il s’agit de montrer l’existence d’orbites dont les actions varient d’une quantité indépendante de la taille de la perturbation.
Dans cet exposé nous étudierons un phénomène analogue pour des perturbations de difféomorphismes produit sur $\A^2$ et nous montrerons l’apparition générique d’orbites de diffusion pour des perturbations
assez petites.

Jeudi 2 avril 2015 à 14h30, salle H : Richard Moeckel (University of Minnesota). Realizing all free homotopy classes for the planar three-body problem.

Abstract : The configuration space of the planar three-body problem, reduced by rotations and with collisions excluded, has a rich topology which supports a large set of free homotopy classes. These classes have a simple description in terms of syzygy (or eclipse) sequences.
Each homotopy class corresponds to a unique « reduced » syzygy sequence.
We prove that each reduced syzygy sequence is realized by a periodic solution of the rotation-reduced Newtonian planar three-body problem. The realizing solutions have small, nonzero angular momentum and repeatedly come very close to triple collision.

31 mars 2015 : Alexander Bufetov (CNRS AMU). Quasi-symétries des processus déterminantaux.

24 mars 2015 à 13h30 : François Béguin (Université Paris 13). Constructions de flots d’Anosov en dimension 3.

Résumé : Je présenterai un procédé pour construire des flots d’Anosov en dimension 3, par recollements de « blocs élémentaires ». Ce procédé permet par exemple d’exhiber, pour chaque entier n, une variété de dimension 3 qui porte au moins n flots d’Anosov transitifs différents. Inversement, j’expliquerai comment on peut découper un flot d’Anosov en « blocs élémentaires ». Il s’agit de travaux en commun avec C. Bonatti et B. Yu.

3 mars 2015 : Pierre Berger (CNRS Université Paris 13). Familles C^r génériques ayant robustement une infinité de puits.

Résumé : Nous donnerons un contre exemple à une conjecture de Pugh – Shub, en montrant que la finitudes des attracteurs n’est pas typique au sens de Kolmogorov.
Plus précisément, nous montrons que pour tout $ \infty\ge r> d\ge 0$ ou $\infty>r\ge d\ge 2$, pour toute variété de dimension au moins 2, il existe un sous-ensemble Baire générique d’un ouvert $U $ de $C^d([-1,1]^k,C^r(M,M))$, tel que pour toute famille $(f_a)_{a\in R}$ et pour tout $a\in [-1,1]^k$, l’application $f_a$ possède une infinité de puits. Quand $M$ est de dimension au moins 3, ces familles sont formées par des difféomorphismes.

24 février 2015 : Laurent Niederman (Université Paris Sud). Trajectoires co-orbitantes quasi-périodiques dans le problème des trois corps planétaire. Travail en commun avec Philippe Robutel.

Résumé : Les trajectoires des satellites Janus et Epimetheus autour de Saturne
sont parmi les plus curieuses du système solaire. Ces satellites échangent leurs
orbites tout les quatre ans.
On donne une preuve rigoureuse (et à notre connaissance, la première) de
l’existence d’orbites quasi-périodiques (donc stables) dans le problème des trois corps grace à la théorie KAM.

17 février 2015 Reporté : Alexander Bufetov (CNRS AMU). Quasi-symétries des processus déterminantaux.

27 Janvier 2015 : Pierre Dehornoy (Université Grenoble 1). Quels flots géodésiques sont lévogyres?

Résumé: Ecrire le flot d’un champ de vecteurs comme suspension d’un difféomorphisme permet de réduire sa dynamique à celle de l’application de premier retour du difféo. Les flots lévogyres sont des flots qui peuvent s’écrire comme suspension d’autant de façons qu’on peut l’espérer. Nous verrons pourquoi et nous verrons comment la construction de « patrons » permet de déterminer au sein des flots géodésiques sur surfaces et orbifolds lesquels sont lévogyres.


20 janvier 2015 : Damien Gayet (Université Grenoble 1). Une majoration du nombre moyen de composantes connexes d’une hypersurface nodale aléatoire.

13 janvier 2015 : Ilia Smilga (Université Paris Sud). Pavages affines et invariants de Margulis.

Résumé : En 1983, Margulis a exhibé un groupe discret de transformations affines, libre et agissant proprement sur l’espace affine, fournissant ainsi un contre-exemple à une conjecture formulée par Milnor. Pour cela, il a défini pour certaines transformations affines un invariant (scalaire) lié à leurs parties de translation le long de leurs « axes » (sous-espaces stables). En construisant un invariant analogue mais à valeurs dans un espace vectoriel, j’ai pu fabriquer de nombreux autres contre-exemples. Je vais expliquer comment utiliser cet
invariant pour construire des groupes ayant les propriétés requises.

6 janvier 2015 : Jingzhi Yan (Institut de mathématiques de Jussieu). Existence of periodic points near an isolated fixed point with Lefschetz index 1 and zero rotation for area preserving surface homeomorphisms.

Abstract : Let f be an orientation and area preserving diffeomorphism of an oriented surface M with an isolated degenerate fixed point z_0 with Lefschetz index one. Le Roux conjectured that z_0 is accumulated by periodic orbits. We will approach Le Roux’s conjecture by proving that if f is isotopic to the identity by an isotopy fixing z_0 and if the area of M is finite, then z_0 is accumulated not only by periodic points, but also by periodic orbits in the measure sense. More precisely, the Dirac measure at z_0 is the limit in weak-star topology of a sequence of invariant probability measures supported on periodic orbits. Our proof is purely topological and will work for homeomorphisms and is related to the notion of local rotation set.

16 décembre 2014 : Renaud Leplaideur (Université de Brest). Transition de phase congelante avec support dans le quasi-cristal de Fibonacci.

Résumé : L’objectif est de présenter la problématique des transitions de phase en théorie ergodique des systèmes dynamiques ainsi qu’un nouvel angle d’étude des substitutions.

Une grande partie de l’exposé sera consacrée à rappeler les notions de base du formalisme thermodynamique pour un système expansif. Ces rappels étant faits, je pourrai expliquer pourquoi exhiber des exemples de potentiels avec transition de phase n’est pas si simple et comment les substitutions arrivent naturellement dans l’étude de ce problème.

9 décembre 2014 : Frédéric Le Roux (Université Pierre et Marie Curie). Invariants spectraux et ensembles non enlacés. (Travail en collaboration avec Vincent Humilière et Sobhan Seyfaddini)

Résumé : La géométrie symplectique permet de construire des invariants spectraux associés à toute fonction hamiltonienne sur une variété symplectique. Ces invariants, qui reposent ou bien sur la théorie des fonctions génératrices (C. Viterbo), ou bien sur l’homologie de Floer (M. Schwarz, Y.-G. Oh) , donnent des renseignements spectaculaires sur la dynamique et l’algèbre des difféomorphismes hamiltoniens. Cependant, ils sont difficilement calculables en pratique.
Les ensembles non enlacés jouent un rôle clé dans la théorie, développée par P. Le Calvez, des feuilletages transverses à une isotopie sur une surface.
Dans ce travail, inspiré par une conjecture de P. Le Calvez, nous montrons qu’une formule simple relie les invariants spectraux de toute fonction hamiltonienne autonome aux ensembles non enlacés de l’isotopie qu’elle engendre.

2 décembre 2014 : Gioia Vago (Université de Bourgogne, Dijon). L’invariant d’Ogasa en dimension 3.

Résumé : Étant donnée une variété M, on cherche à savoir quelles sont les fonctions de Morse définies sur M dont les niveaux réguliers seraient les plus simples.
Pour cela, Ogasa propose l’invariant suivant. D’abord, pour toute fonction de Morse f sur M fixée, on calcule la somme des nombres de
Betti de chaque niveau régulier, puis on ne retient que le maximum de ces nombres. Pour toute f fixée, cette valeur maximale dépend donc de M et de f. Ensuite on minimise, en faisant varier la fonction de Morse f sous-jacente parmi toutes celles qui sont possibles. Le nombre obtenu par cette procédure de minimax ne dépend que de la variété initiale M et c’est l’invariant d’Ogasa.
Notons qu’en dimension 2, le calcul de cet invariant est immédiat. Concernant la dimension 3, avec Michel Boileau nous avons compris ce que cet invariant dynamique mesure et nous avons montré qu’il est relié à des invariants topologiques et algébriques de la variété sous-jacente.
Dans l’exposé je donnerai d’abord quelques exemples simples de calcul de cet invariant. Puis je me concentrerai sur la dimension 3 : j’expliquerai, à l’aide des résultats obtenus, pourquoi cet invariant est si intéressant.

25 novembre 2014 à 14h30 : Florent Balacheff (Université Lille 1). Mensurations de la 2-sphère.

Résumé : Il est possible de décrire les géométries de la 2-sphère à l’aide des longueurs de certaines courbes. Les meilleures descriptions reposent essentiellement sur un principe cristallisé par le lemme de Besicovich. Dans cet exposé, nous présenterons ce lemme et ces conséquences, ainsi que l’utilisation qui en est faite en géométrie différentielle globale.

18 novembre 2014 : Alba Malaga Sabogal (Université Paris-Sud). Une famille de transformations préservant la mesure de Z×T.

Résumé : J’introduirai une famille de transformations préservant la mesure de Z×T. Cet espace de phases est une union discrète de cercles, le système
dynamique que j’étudie consiste à tourner chaque cercle, et ensuite
déplacer une moitié de chaque cercle d’un niveau vers le haut et l’autre
moitié d’un niveau vers le bas. Le paramètre est la suite bi-infinie de
rotations. Je présenterai quelques résultats sur les comportements
dynamiques typiques dans cette famille.

21 octobre 2014 : Richard Montgomery (University of California, Santa Cruz). Conjugate points near the Hill boundary.

Abstract : The Jacobi, or Jacobi-Maupertuis metric [JM] reformulates Newton’s equations from mechanics into geodesic equations for a Riemannian metric which degenerates to zero at the Hill boundary.
We prove that a JM-geodesic which comes sufficiently close to a regular
point of the boundary contains pairs of conjugate points also close to the boundary. We prove the conjugate locus of any point near enough to the boundary is a hypersurface tangent to the boundary.
Our method of proof is to reduce the analysis of geodesics near the
boundary to that of solutions to Newton’s equations in the simplest
model case: a constant force and so a linear potential. The model case is equivalent to the Freshman physics problem of throwing balls upward from a fixed point at fixed speeds and drawing the resulting arcs.

Lundi 20 octobre 2014 à 14h : Nadjia Haouri (USTO-MB, Oran). Variétés lorentziennes naturellement réductives de dimension trois.

14 octobre 2014 : Vincent Borrelli (Université Lyon 1). Intégration convexe, plongements isométriques et visualisation.

Résumé : En 1954, F. Nash énonce un théorème déconcertant : il n’y a pasd’obstruction à l’existence de plongements isométriques en petite
codimension ! Complété par N. Kuiper, son résultat implique qu’il existe
des plongements isométriques de tores plats dans l’espace euclidien de
dimension trois mais aussi, que l’on peut plonger isométriquement la
sphère ronde de rayon 1 dans une boule de rayon $\frac{1}{2}$ ou encore,
que l’on peut effectuer le retournement de la sphère de façon
isométrique… Bien sûr, la courbure de Gauss interdit à tous ces objets
d’être de classe $C^2$, mais ils sont tout de même de classe $C^1$ et
possèdent en tout point un espace tangent. Plus tard, en revisitant les
travaux de nombreux géomètres, M. Gromov invente une technique qui
généralise et éclaire de façon extraordinaire la manière dont F. Nash et
N. Kuiper ont construit leurs plongements isométriques : c’est la
technique de l’intégration convexe. A l’aide de cette méthode, une
implémentation est possible et la visualisation des plongements paradoxaux
de F. Nash et N. Kuiper devient envisageable.

Programme Hiver-Printemps 2014

Mardi 4 Février. Patrick Bernard (Paris Dauphine).

Solutions de viscosité et solutions variationelles des équations de Hamilton Jacobi dépendant du temps.

Mardi 18 Février. Anete Soares (Avignon/UFRPE Brazil).

A Topological Existence Proof for the Broucke Orbits in the Isosceles Three-Body Problem.
Resumé: We present a topological proof for the existence of certain symmetrical periodic orbits of the planar isosceles three-body problem which have been called Broucke orbits. Our proof is based on the construction of a Wazewski set (a weaker and more ancient form of Conley’s concept of isolating blocks) in phase space. We find Broucke’s family of periodic orbits by a shooting argument, choosing a suitable set of initial conditions in the Wazewski set, and letting it flow in the phase space to obtain the desired exit condition. The resulting arc of solution from the initial to the exit condition is then used to produce the periodic solutions via reflections and time translations.

Mardi 25 Février. Sébastien Alvarez (ENS Lyon).

Mesures de Gibbs pour le flot géodésique feuilleté.

Mardi 11 Mars. Benoit Kloeckner (UJF Grenoble).

Courbure et isopérimétrie

Résumé – Un inégalité isopérimétrique sur une variété est une minoration du
volume du bord de tout domaine en fonction du volume du domaine
lui-même. On connait l’inégalité isopérimétrique optimale pour chacune
des variétés à courbure constante (sphères, espace euclidien, espaces
hyperboliques),
et on constate facilement que plus leur courbure est basse, plus
l’inégalité isopérimétrique est forte. Il a donc naturellement été
conjecturé que, sous des hypothèses raisonnables (simple connexité,
…), toute variété de courbure majorée par k devrait satisfaire à
l’inégalité isopérimétrique de la variété modèle à courbure k.
Seuls quelques cas de cette conjecture sont actuellement résolus :
dimension 2 (Weil et Aubin notamment), 3 (Kleiner) et 4 pour k=0
(Croke).

Le but de cet exposé est de présenter les idées d’une preuve de la
conjecture ci-dessus en
dimension 2 et 4 pour k>0, ainsi qu’une réponse partielle pour k<0. Ce
résultat a été obtenu en collaboration avec G. Kuperberg (Université
de Californie à Davis).

Mardi 18 Mars. Alberto Farina (Amiens).

Théorèmes de décomposition, résultats de symétrie et problèmes surdéterminés pour les variétés Riemanniennes

Jeudi 27 Mars. André Martinez (Bologne).

Estimations optimales pour un résonateur de Helmholtz

Résumé: On considère un résonateur de Helmholtz bi-dimensionel, consistant en une cavité reliée par un tube fin à un domaine extérieur. Sous une hypothèse géométrique concernant la partie finale du tube, on prouve une estimation exponentielle optimale sur la largeur des résonances, asymptotiquement lorsque la section du tube tend vers zéro. Une extension à des dimensions plus grandes est également obtenue. La preuve est basée sur des inégalités de Carleman jusqu’au bord, et sur des formules de connexion entre le tube et le domaine extérieur. Il s’agit d’un travail en collaboration avec L. Nédélec.

Mardi 1er Avril. Marc Arcostanzo (Avignon).

Hamiltoniens de Tonelli sans points conjugués.

Mardi 8 Avril. Suresh Eswarathasan (IHES). Reporté au 20 Mai.

Mardi 15 Avril. Gilbert Levitt (Caen).

Outomorphismes des groupes hyperboliques.

Mardi 6 Mai. S. F. Fenley (Florida State University).

Knot theory of R-covered Anosov flows: homotopy versus isotopy of closed orbits.

Mardi 13 Mai. Patrice Le Calvez (Paris 6).

Une preuve de dimension finie du théorème de Branham.

Mardi 20 Mai. Suresh Eswarathasan (IHES).

Perturbation of Schrodinger operators on surfaces of constant negative curvature.

Mardi 25 Juin. Renaud Leplaideur (Université de Bretagne occidentale).

Transition de phase congelante avec support dans le quasi-cristal de Fibonacci

Résumé: L’objectif est de présenter la problématique des transitions de phase en théorie ergodique des systèmes dynamiques ainsi qu’un nouvel angle d’étude des substitutions.
Une grande partie de l’exposé sera consacrée à rappeler les notions de base du formalisme thermodynamique pour un système expansif. Ces rappels étant faits, je pourrai expliquer pourquoi exhiber des exemples de potentiels avec transition de phase n’est pas si simple et comment les substitutions arrivent naturellement dans l’étude de ce problème.

Programme Automne 2013

Mardi 15 octobre. Colin Guillarmou (DMA-ENS).

Résonances de Ruelle-Pollicott sur les variétés hyperboliques compactes.

Mardi 22 octobre. Dmitry Jakobson (McGill university, Montreal).

Conformal invariants from nodal sets.

Mardi 5 novembre. Marc Peigné (Tours).

Exposants critiques des réseaux, entropie volumique et volume des boules en courbure strictement négative.

Mardi 12 novembre. Oscar Bandtlow (Queen Mary, London).

Spectral properties of transfer operators for analytic expanding circle maps.

Mardi 19 novembre. Yannick Bonthonneau (DMA-ENS).

Titre: Ergodicité quantique dans les surfaces à pointes.

Résumé: Zelditch (94) a montré un résultat d’ergodicité quantique dans les
surfaces hyperboliques de volume fini mais non compactes. Nous en
expliquerons une extension au cas des surfaces à pointes: Nous discuterons
ensuite de divers résultats qui nous éclairent ( un peu) sur les
propriétés spectrales du laplacien sur ces surfaces, et leur rapport avec
le flot géodésique.

Mardi 3 décembre. Laurent Michel (Nice).

Titre: Marches aléatoires hypoelliptiques.

Résumé: On étudie la convergence vers l’équilibre d’une marche aléatoire
associée à une famille hypoelliptique de champs de vecteurs sur une variété
compacte (travail en collaboration avec G. Lebeau).

Mardi 10 décembre. Alexei Tsygvintsev (ENS Lyon). TBA

Mardi 17 décembre. Viviane Baladi (DMA-ENS).

Titre: Violation de la réponse linéaire dans la famille logistique.

Résumé: La famille logistique est un exemple simple de
famille de dynamiques non uniformément hyperboliques
avec des bifurcations. Après un panorama de la
problématique de la « réponse linéaire » pour
les mesures physiques, nous présenterons nos
résultats récents avec Benedicks et Schnellmann.

PROGRAMME 2012-2013 :

25 juin 2013 : Frédéric Naud (Université d’Avignon). Bornes de Weyl pour les résonances des surfaces.

Résumé : Je parlerais dans cet exposé de divers résultats et conjectures liés
à la théorie spectrale des surfaces hyperboliques d’aire infinie.

18 juin 2013 : Jean-Claude Picaud (Université François Rabelais, Tours). Fonction de Margulis pour les variétés non compactes de courbure négative (Travail en collaboration avec F. Dal’Bo, M. Peigné et A. Sambusetti).

Résumé : A la fin des années 60, G. Margulis montre dans sa thèse comment la propriété de mélange du flot géodésique sur une variété compacte de courbure négative (pour une mesure – éponyme) entraîne l’existence d’un équivalent du volume des boules dans le revêtement universel de la variété. Dans un travail récent, nous donnons des conditions nécessaires (et faiblement suffisantes, au sens où il existe des contre-exemples si elles ne sont pas satisfaites) pour que l’existence d’un équivalent asymptotique persiste lorsque l’on considère des variétés de volume fini. Nous motiverons ce travail par une discussion préliminaire, de sorte à s’adresser à un public (relativement) large.

11 juin 2013 : Pierre Mounoud (Université de Bordeaux 1). Sur les tores lorentziens sans points conjugués.

Résumé : Soient (T^2,g) un tore lorentzien, c’est-à-dire muni d’un champ de formes bilinéaires de signature (1,1), et gamma une géodésique de g. On dit que deux points de gamma sont conjugués s’il existe une variation géodésique infinitésimale de gamma les laissant fixes. Par exemple, si les géodésiques d’un tore g_0 sont des droites (c.à-d. s’il est plat), on voit qu’il ne possède pas de points conjugués. On se propose de montrer que, contrairement au cas riemannien, il existe des tores sans
points conjugués qui ne sont pas plats, qu’il en existe dans chaque composante connexe de l’espace des métriques.

4 juin 2013 : Samuel Tapie (Université de Nantes). Entropie minimale et flot de Yamabe en courbure négative (collaboration avec P. Suarez-Serrato, UNAM Mexico).

Résumé : Si une variété compacte à courbure section elle négative admet une métrique localement symétrique, on sait depuis les travaux d’Hamenstaedt et de Besson-Courtois-Gallot que cette métrique symétrique est l’unique minimum pour l’entreprise parmi les déformations qui préservent une borne de courbure (ou le volume).
On aimerait comprendre comment les symétries influent sur l’entropie lorsque les variétés n’admettent pas de métrique localement symétrique ou sont de volume infini. Je montrerai à l’aide d’un flot de Yamabe que dans chaque classe conforme pour une variété compacte ou une surface convexe-cocompacte, si on fixe une borne sur la courbure, les extrema de l’entropie sont les métriques à courbure scalaire constante.

21 mai 2013 : Brice Loustau (Université de Paris Sud, Orsay). Empilement de cercles et applications conformes.

Résumé : Il sera question dans cet exposé du théorème des empilements de cercles et de son application au calcul d’une approximation de l’application conforme de Riemann d’après Thurston. Je présenterai un programme écrit en C++ écrit par Benjamin Beeker et moi-même, et évoquerai quelques questions connexes.

14 mai 2013 : Régis Monneau (Cermics, Ecole des Ponts ParisTech). Ondes progressives dans les modeles de Frenkel-Kontorova amortis.

Résumé : Nous étudions des modèles généraux de Frenkel-Kontorova complètement amortis. Il s’agit de la dynamique de particules décrite par un système d’EDO couplées. Ce modèle peut être vu comme une version discrétisée d’équations de réaction-diffusion. Grace à une nouvelle approche (utilisant la notion de correcteur en théorie de l’homogénéisation), nous prouvons l’existence d’ondes progressives pulsatoires (Pulsating traveling waves) pour ces modèles discrets.

7 mai 2013 : Jacques Féjoz (Université de Paris Dauphine). Remarques sur la forme normale de Moser et la théorie KAM.

Résumé : Je montrerai comment démontrer simplement la forme normale de Moser des champs de vecteurs possédant un tore invariant réductible, et comment en déduire les théorèmes KAM classiques, par exemple un analogue en dimension quelconque du théorème de la courbe translatée de Rüssmann.

30 avril 2013 : Laurent Niederman (Université de Paris Sud, Orsay). Stabilité superexponentielle générique des points fixes elliptiques dans les systèmes hamiltoniens.

Résumé : Morbidelli et Giorgilli ont montré un résultat de stabilité en temps superexponentiellement long si l’on considère un système hamiltonien possédant un tore invariant non résonant avec une torsion de signe définie (ce qui correspond à de la convexité). Plus précisément, les solutions du système varient peu sur des temps superexponentiels longs par rapport à
l’inverse de la distance au tore invariant.

On montre ici qu’une telle propriété de stabilité superexponentielle
est génériquement vérifiée au voisinage d’un point fixe elliptique
dans un système hamiltonien.

Suivant la stratégie de Morbidelli Giorgilli dans le cas convexe, la
preuve comporte deux étapes : la construction d’une forme normale
de Birkhoff à un degré élevé puis l’application de la théorie de
Nekhoroshev.

Bounemoura a montré que la deuxième étape de cette construction reste
possible si la forme normale de Birkhoff associée au tore invariant appartient à un ensemble générique parmi les séries formelles. Ceci ne suffit pas pour démontrer ce type de résultat de stabilité superexponentielle dans un cadre général. Il faut aussi établir que la plupart des points fixes elliptiques non résonants admettent une forme normale de Birkhoff dans l’ensemble introduit par Bounemoura. On montre ici que cette propriété est vérifié
génériquement au sens de la mesure (prévalence) grâce à des méthodes
similaires à celles développées dans des articles de Kaloshin-Hunt et Kaloshin-Gorodetski.

A priori, il ne devrait pas y avoir d’obstacles pour étendre ces résultats au
cas d’un tore invariant Lagrangien non résonant.

29 avril 2013(séance exceptionnelle) : Sergio Fenley (Florida State University and Princeton University). Anosov and pseudo-Anosov flows.

Résumé : This talk will be an overview of Anosov and pseudo-Anosov
flows, particularly in dimension 3. We will first explore how these
flows were originally studied by Anosov. Later they were very firmly
connected with the topology and geometry of 3-manifolds by Thurston
in the mid to late seventies. We will describe some of the main breakthroughs and some of the main open questions in this area.

2 avril 2013 : Fanny Kassel (Université de Lille 1). Variétés lorentziennes complètes de courbure constante en d